New Jacobi-like Identities for Zk Parafermion Characters

نویسندگان

  • Philip C. Argyres
  • Keith R. Dienes
  • Henry Tye
چکیده

We state and prove various new identities involving the ZK parafermion characters (or level-K string functions) cn for the cases K = 4, K = 8, and K = 16. These identities fall into three classes: identities in the first class are generalizations of the famous Jacobi θ-function identity (which is the K = 2 special case), identities in another class relate the level K > 2 characters to the Dedekind η-function, and identities in a third class relate the K > 2 characters to the Jacobi θ-functions. These identities play a crucial role in the interpretation of fractional superstring spectra by indicating spacetime supersymmetry and aiding in the identification of the spacetime spin and statistics of fractional superstring states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parafermionic derivation of Andrews-type multiple sums

A multi-parafermion basis of states for the Zk parafermionic models is derived. Its generating function is constructed by elementary steps. It corresponds to the Andrews multiple-sum which enumerates partitions whose parts separated by the distance k− 1 differ by at least 2. Two analogous bases are derived for graded parafermions; one of these entails a new expression for their fermionic charac...

متن کامل

Parafermion Hall States from Coset Projections of Abelian Conformal Theories

The Zk-parafermion Hall state is an incompressible fluid of k-electron clusters generalizing the Pfaffian state of paired electrons. Extending our earlier analysis of the Pfaffian, we introduce two “parent” abelian Hall states which reduce to the parafermion state by projecting out some neutral degrees of freedom. The first abelian state is a generalized (331) state which describes clustering o...

متن کامل

Polynomial Relations Among Characters coming from Quantum Affine Algebras

The Jacobi-Trudi formula implies some interesting quadratic identities for characters of representations of gln. Earlier work of Kirillov and Reshetikhin proposed a generalization of these identities to the other classical Lie algebras, and conjectured that the characters of certain finite-dimensional representations of Uq(ĝ) satisfy it. Here we use a positivity argument to show that the genera...

متن کامل

ar X iv : h ep - t h / 06 02 24 8 v 1 2 3 Fe b 20 06 CHARACTERS OF GRADED PARAFERMION CONFORMAL FIELD THEORY

The graded parafermion conformal field theory at level k is a close cousin of the much-studied Z k parafermion model. Three character formulas for the graded parafermion theory are presented, one bosonic, one fermionic (both previously known) and one of spinon type (which is new). The main result of this paper is a proof of the equivalence of these three forms using q-series methods combined wi...

متن کامل

Lattice Path Proofs for Determinantal Formulas for Symplectic and Orthogonal Characters

We give bijective proofs for Jacobi{Trudi-type and Giambelli-type identities for symplectic and orthogonal characters. These proofs base on interpreting King and El-Sharkaway's symplectic tableaux, Proctor's odd and intermediate symplectic tableaux, Proctor's and King and Welsh's orthogonal tableaux, and Sundaram's odd orthogonal tableaux in terms of certain families of nonintersecting lattice ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992